
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 343-346

ROLE OF TESTING IN PHASES OF SDLC AND QUALITY

Youddha Beer Singh* & Shivani Goel**

Software testing is an important technique for assessing the quality of a software product. In this paper, various types of
testing and various attributes of software quality are explained. Identifying the types of testing that can be applied for checking
a particular quality attribute is the aim of this research paper. All types of testing can not be applied in all phases of software
development life cycle. Which testing types are applicable in which phases of life cycle of software development is also
summarized.

Keywords: Quality Attributes, Phases of SDLC, Testing Technique, Static Attributes, Dynamic Attributes.

*,** CSED, Thapar University, Patiala
E-mail: youdhhabeersingh@gmail.com*

E-mail: shivani@thapar.edu**

1. INTRODUCTION TO TESTING

Software testing is the process of analyzing a software item
to detect the differences between existing and required
conditions (that is, bugs) and to evaluate the features of the
software item [8]. Software testing is an activity that should
be done throughout the whole development process [6]
Software testing is one of the “verification and validation,”
or V&V, software practices. Some other V&V practices,
such as inspections and pair programming. Verification (the
first V) is the process of evaluating a system or component
to determine whether the products of a given development
phase satisfy the conditions imposed at the start of that phase
[7]. Verification activities include testing and reviews. For
example, in the software for the Monopoly game, we can
verify that two players cannot own the same house.
Validation is the process of evaluating a system or
component during or at the end of the development process
to determine whether it satisfies specified requirements [7].
At the end of development validation (the second V)
activities are used to evaluate whether the features that
have been built into the software satisfy the customer
requirements and are traceable to customer requirements.

If we fail to deliver a reliable, good and problem free
software solution, we fail in our project and probably we
may lose our client. So in order to make it sure, that we
provide our client a proper software solution, we go for
testing. We check out if there is any problem, any error in
the system, which can make software unusable by the client.
We make software testers test the system and help in finding
out the bugs in the system to fix them on time. We find out
the problems and fix them and again try to find out all the
potential problems. Software testing consists of several
subcategories, each of which is done for different purposes,
and often using different techniques.

There are two main purpose of Testing [3]

1. To evaluate quality or acceptability of that which
is being tested.

2. To discover problems or errors

2. OBJECTIVE OF TESTING

There are four main objective of testing [1] are:

1. Demonstration: It show that the system can be
used with acceptable risk, demonstrate functions
under special conditions and show that products
are ready for integration or use.

2. Detection: It discover defects, errors, and
deficiencies. Determine system capabilities and
limitations quality of components, work products,
and the system.

3. Prevention: It provide information to prevent or
reduce the number of errors clarify system
specifications and performance. Identify ways to
avoid risks and problems in the future.

4. Improving Quality: By doing effective testing, we
can minimize errors and hence improve the quality
of software.

3. VARIOUS TYPES OF TESTING

There are two basic classes of software testing, black box
testing and white box testing. For now, you just need to
understand the very basic difference between the two
classes, clarified by the definitions below [11]:

1. Black box testing (also called functional testing)
is testing that ignores the internal mechanism of a
system or component and focuses solely on the
outputs generated in response to selected inputs
and execution conditions. Examples of black box
testing are: Equivalence class partitioning,
Boundary value analysis, cause-effect graphs,

��� �������	
���	����	�	������	����

COM6\D:\HARESH\11-JITKM

comparison testing, acceptance testing, Functional
testing.

2. White box testing (also called structural testing and
glass box testing) is testing that takes into account
the internal mechanism of a system or component.
Examples of white box testing are: Basis path
testing, structural testing, Statement/Branch/
Condition/Loop/Path Coverage testing, Data-flow
testing, Domain and boundary testing, Logical
based testing, Fault based testing, Unit testing,
syntax testing, table testing, desk checking.

4. APPLYING VARIOUS TYPES OF TESTING IN SOFTWARE

DEVELOPMENT LIFE CYCLE PHASES

Various phases of software development life cycle are :
requirements gathering and analysis, design, coding,
integration , implementation and maintenance. The testing
phase can be used in all of these life cycle phases as an
umbrella activity. V model of testing given by Mr. Perry
includes only 5 phases of SDLC. Here we extend this model
to include more phases of SDLC and select the types of
testing that we can apply in each phase:

Table 1
Various Types of Testing in Software Development Life Cycle Phases

Life Cycle Phase Types of Testing Person Involved
in Testing

Planning for testing Exploratory testing, ad hoc testing, Free form testing, risk based Testers
testing, structured walkthrough,

Requirements gathering Prototyping , Requirement Testing

Analysis Decision tables

Design JADs, integration testing, system testing

Coding: Code and Unit testing, basis path testing, boundary value testing, Developer
branch coverage testing, condition coverage testing, desk checking,
loop coverage testing, statement coverage testing, syntax testing,
table testing,

Integration: Integration and system testing, black box testing, white box testing,
bottom up testing, CRUD testing, Database testing, end to end testing,
equivalence partitioning, incremental integration testing, inspections,
positive and negative testing, sandwich testing, thread testing, top
down testing,

Implementation acceptance testing, alpha testing, beta testing, cause-effect graphing, Users, Developer
comparison testing, compatibility testing, Exception testing, load testing,
mutation testing, orthogonal array testing, performance testing, stress
testing, prior detect history testing, random testing, range testing,
recovery testing, state transition testing, robustness testing, penetration
testing, security testing, Back to back testing

Maintenance: Maintenance and Regression testing histogram testing, pareto testing,
run chart, statistical profile testing,

5. QUALITY

Quality is defined as “the essential character of omitting,
an inherent or distinguishing character”. There are two
generally accepted meanings of quality [10]. The first is that
quality means “meeting requirements.” With this definition,
to have a quality product, the requirements must be
measurable, and the product’s requirements will either be
met or not met. The second is, the quality definition by the
customer “whether the product or service does what the
customer needs”. Another way of wording it is “fit for use.”
There should also be a description of the purpose of the

product, typically documented in a customer “requirements
specification”. The requirements are the most important
document, and the quality system revolves around it. In
addition, quality attributes are described in the customer’s
requirements specification. Examples include usability, the
relative ease with which a user communicates with the
application; portability, the capability of the system to be
executed across a diverse range of hardware architectures;
and reusability, the ability to transfer software components
constructed in one software system into another. We can
classify all quality features into two categories based on the
point where they can be applied i.e. on code or application

����	��	������	��	����	��	���	���	������� ���

COM6\D:\HARESH\11-JITKM

5.1 Static Attributes

Static attributes refer to the actual code (maintainable and
testable code) and related documentation (Correct and
complete documentation).

5.2 Dynamic Attributes

Dynamic attributes refer to the behaviour of the application
while in use. Reliability, correctness completeness,
consistency, usability, and performance.

5.3 How to Measure Quality ?

In order to measure quality, we need to analyse requirements
to design test cases, then design the test cases, document
them, implement them and execute these test cases. Then
the results are analysed. Before all this, we need to plan for
testing, including risk analysis and test management
practices. An example is IBM RUP software tools used by
testers to execute a software test plan [11]. This all includes
communication skill for the effective tester.

5.4 Various Quality Attributes Are:

Understandability: The purpose of the software product
is clear. This goes further than just a statement of purpose-
all of the design and user documentation must be clearly
written so that it is easily understandable. Obviously, the
user context must be taken into account, e.g. if the software
product is to be used by software engineers it is not required
to be understandable to lay users.

Completeness: All parts of the software product are
present and each of its parts are fully developed. For
example, if the code calls a sub-routine from an external
library, the software package must provide reference to that
library and all required parameters must be passed. All
required input data must be available.

Conciseness: No excessive information is present. This
is important where memory capacity is limited, and it is
important to reduce lines of code to a minimum. It can be
improved by replacing repeated functionality by one sub-
routine or function which achieves that functionality. This
quality factor also applies to documentation.

Portability: The software product can be easily
operated or made to operate on multiple computer
configurations. This can be between multiple hardware
configurations (such as server hardware and personal
computers), multiple operating systems (e.g. Microsoft
Windows and Linux-based operating systems), or both.

Consistency: The software contains uniform notation,
symbology and terminology within itself.

Maintainability: The product should facilitates
updating to satisfy new requirements and software product
that is maintainable is simple, well-documented

Testability: The software product facilitates the
establishment of acceptance criteria and supports evaluation
of its performance. Such a characteristic must be built-in
during the design phase if the product is to be easily testable,
since a complex design leads to poor testability.

Usability: The product is convenient and practicable
to use. The component of the software which has most
impact on this is the user interface (UI), which for best
usability is usually graphical.

Reliability: The software can be expected to perform
its intended functions satisfactorily over a period of time.
Reliability also encompasses environmental considerations
in that the product is required to perform correctly in
whatever conditions it is operated in; this is sometimes
termed robustness.

Structure: The software possesses a definite pattern
of organization in its constituent parts.

Efficiency: The software product fulfills its purpose
without wasting resources, e.g. memory or CPU cycles.

Security: The product is able to protect data against
unauthorized access and to withstand malicious interference
with its operations. Besides the presence of appropriate
security mechanisms such as authentication, access control
and encryption, security also implies reliability in the face
of malicious, intelligent and adaptive attackers:

6. APPLICATION OF TESTING TYPES TO MEASUREMENT OF

QUALITY ATTRIBUTES

We can also categorize various types of testing according
to the quality feature it applies to in the given Table:

Table 2
Testing Technique According to Quality Features

Quality Attribute Types of Testing

Functionality Functional testing
Security Security testing
Complexity Unit testing
Performance Performance testing
Compatibility Compatibility testing
Reliability Stress testing, Robustness testing, load testing
Vulnerability Penetration testing
Usability Comparison testing
Consistency Database testing, Table testing
Correctness Database testing, Table testing
Portability
Recovery Recovery testing
Completeness Boundary/Statement/loop/condition/path

coverage testing
Efficiency Performance testing
Understandability
Structure Structural testing
Maintainability Regression testing

��� �������	
���	����	�	������	����

COM6\D:\HARESH\11-JITKM

CONCLUSION

Quality is the main focus of any software engineering
project. Without measuring, we cannot be sure of the level
of quality in software. So the methods of measuring the
quality is software testing technique. This paper relates
various types of testing that we can apply in measuring
various quality attributes. Also which testing are related to
various phase of SDLC.

REFERENCES

[1] Software Program Managers Network, Little Book of
Testing, 1, (1998).

[2] Kit, Ed, Software Testing in the Real World, Addison-Wesley,
(1995), 3.

[3] Jorgensen, Paul C., Software Testing A Craftsman’s
Approach, CRC Press, (1995) 3.

[4] Software Program Managers Network, Little Book of
Testing, II, (1998).

[5] Program Manager’s Guide for Managing Software, 0.6, 29
(June 2001), Chapter 11.

[6] A. Bertolino, “Chapter 5: Software Testing,” in IEEE
SWEBOK Trial Version 1.00, (May 2001).

[7] IEEE, “IEEE Standard 610. 12-1990, IEEE Standard
Glossary of Software Engineering Terminology,” (1990).

[8] IEEE, “ANSI/IEEE Standard 1008-1987, IEEE Standard for
Software Unit Testing,” No. 1986.

[9] Boris Beizer, Software Testing Techniques. Second Edition,
1990.

[10] Boehm, B. W., and Others, “Characteristics of Software
Quality,” TRW Software Series, December 22, 1973.

[11] IEEE Standard for a Software Quality Metrics Methodology
(IEEE Standard P-1061/D21). New York, N.Y.: Institute of
Electrical and Electronic Engineers, Inc.,1990.

[12] Ballista Paper: Multi-Version Comparison Method to Find
Silent and Hindering Failures.

